Review

HESI A2 Cheat Sheet

CHEMISTRY

Chemistry Basics

Scientific notation

The decimal point is placed after the first digit, followed by $\times 10$ to the power of how many places you move the decimal point.
Eg. 5.7899×10^{3}

The metric system

Conversions:

- m to cm, multiply by 100
- cm to mm , multiply by 10
- km to m, multiply by 1000
- kg to grams, multiply by 1000

Temperature scales

Celsius scale: the freezing point of water is $0^{\circ} \mathrm{C}$ and the boiling point is $100^{\circ} \mathrm{C}$.
Fahrenheit scale: the freezing point of water is $32^{\circ} \mathrm{F}$ and the boiling point is $212^{\circ} \mathrm{F}$.
Kelvin scale- the absolute temperature scale: the freezing point of water is 273.15
K and the boiling point is 373.15 K .
! Temperature differences are the same in units of kelvins and degrees Celsius.
Formula: $\Delta T\left({ }^{\circ} \mathrm{C}\right)=\Delta T(K)$

Conversion:

- Celsius to Fahrenheit: $F=\frac{9}{5} C+32 \quad$. Fahrenheit to Celsius: $C=\frac{5}{9}(F-32)$
- Celsius to Kelvin: $K=C+273.15$ - Kelvin to Celsius: $C=K-273.15$
- Fahrenheit to Kelvin: $K=\frac{5}{9}(F-32)+273.15$
- Kelvin to Fahrenheit: $F=\frac{9}{5}(K-273.15)+32$

Periodic table groups:

- Group 1 - Alkali Metals ($L i, N a, K, R b, C s, F r$)
- Group 2 - Alkali Earth Metals ($\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Ra}$)
- Groups 3-11 - Transition Metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, $R u, R h, P d, A g, C d, H f, T a, W, R e, O s, I r, P t, A u, H g, R f, D b, S g, B h, H s)$
- Group 15 - Pnictogens (N, P, As, Sb, Bi)
- Group 16 - Chalcogens ($0, S, S e, T e, P o$)

Atoms

- Negatively charged electrons follow a random pattern within defined energy shells around the nucleus.
- The nucleus contains more than 99.9% of the mass of the atom.
- Nuclei are made of positively charged protons and electrically neutral neutrons held together by a nuclear force.
- $\mathrm{A}=\mathrm{Z}+\mathrm{N}$ (mass number of nucleus = atomic number + number of neutrons).

Subatomic Particles:

- Proton: positively charged particle; charge is equal but opposite to the negative charge of the electron; the number of protons in the nucleus of an atom determines what kind of chemical element it is.
- Neutron: carries no electrical charge and has the same mass as the proton; not repelled by the cloud of electrons or by the nucleus.
- Electron: negatively charged particle.

Important
Chemical
Equations

Chemical Reactions

Combustion of Methane:

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Photosynthesis (Simplified):
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
Acid-Base Neutralization:
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Formation of Water:

$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Combustion of Hydrogen:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Rusting of Iron:

$4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
Formation of Ammonium Chloride:
$\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
Decomposition of Sodium Chloride:
$2 \mathrm{NaCl} \rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2}$
Synthesis of Ammonia (Haber Process):
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
Combustion of Propane:
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

- Combustion: the formation of CO 2 and H 2 O from the reaction of a chemical and O2.
- Combination (synthesis): the addition of 2 or more simple reactants to form a complex product.
- Decomposition: complex reactants are broken down into simpler products.
- Single Displacement: an element from one reactant switches with an element of the other to form two new reactants.
- Double Displacement: two elements from one reactant switch with two elements of the other to form two new reactants.
- Acid-Base: two reactants form salts and water.

Reversibility

Reversible Reactions - The reactants and products are never fully consumed; they are each constantly reacting and being produced.

Formula: $A+B \rightleftharpoons C+D \quad E g .2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$
Irreversible Reactions - Reactants convert to products and the products cannot convert back to the reactants.

Formula: $A+B \rightarrow C+D$

$$
\text { Eg. } \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Reaction rate: Rate $=-\frac{1}{a} \frac{d[A]}{d t}=-\frac{1}{b} \frac{d[B]}{d t}=\frac{1}{c} \frac{d[C]}{d t}=\frac{1}{d} \frac{d[D]}{d t}$
Formula (balanced chemical reaction): $a \mathrm{~A}+b \mathrm{~B} \rightarrow c \mathrm{C}+d \mathrm{D}$

Oxidation -
 Reduction
 Concentration of solutions

Chemical equilibrium

Nuclear
 chemistry

Types of nuclear reactions:

- Nuclear decay reactions - Occur spontaneously under all conditions.

$$
\begin{array}{ll}
\text { Alpha: }{ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y+{ }_{2}^{4} \mathrm{He} & \text { Gamma: }{ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+{ }_{+1}^{0} e^{+}+\nu_{e} \\
\text { Beta: }{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+{ }_{-1}^{0} e^{-}+\bar{\nu}_{e} &
\end{array}
$$

- Nuclear transmutation reactions - Occur only under special conditions (the collision of a beam of highly energetic particles with a target nucleus or in the interior of stars).

Formula (general representation): ${ }_{Z}^{A} X+{ }_{Z}^{a} x \rightarrow \underset{Z+Z}{A+a} Y+$ other products

