HESI A2 Cheat Sheet

PHYSICS

EXAM

REVIEW

Motion	 Types of Motion Translational – An object moves along a path in any of the three dimensions. Rotational – An object moves along a circular path around a fixed axis. Linear – The body moves in a single direction along a single dimension. Periodic – Motion that repeats itself after certain intervals of time. Simple Harmonic – A simple pendulum where a restoring force acts in the direction opposite to the direction of motion of the object. This restoring force is proportional to the displacement of the object from the mean position. Projectile – Motion which has a horizontal displacement as well as vertical displacement. Oscillatory – Repetitive in nature within a time frame. If it is mechanical it is called vibration. First Law - Any object will remain in its existing state of motion or rest unless a net external force acts on it. Second Law - The greater the mass of an object, the greater the force required to position to the object, the greater the force required to position to posite.
	 <i>Third Law</i> - For every action, there is an equal and opposite reaction.
Acceleration	The average acceleration is the rate at which velocity changes. Formula: $a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$
Friction	Friction is a force that opposes relative motion between systems in contact. • magnitude of static friction: $f_s \le \mu_s \cdot N$ • magnitude of kinetic friction: $f_k = \mu_k N$
Rotation	Average angular acceleration: $\bar{\alpha} = \frac{\Delta \omega}{\Delta t}$ Rotational and Linear Variables - Relationships \cdot magnitude of angular displacement: $\theta = \frac{s}{r} \rightarrow \text{magnitude of angular velocity: } \omega = \frac{v}{r}$ \cdot magnitude of angular acceleration: $\alpha = \frac{a}{r}$

	Kinematics of rotational motion: the relationships between the angle of rotation , angular velocity, angular acceleration, and time. Extend this definition to any system of particles by adding up the kinetic energies of all the constituent particles: $K = \sum \frac{1}{2}mv^2$.
Uniform circular motion	An object undergoing uniform circular motion is always accelerating, even though the magnitude of its velocity is constant. Centripetal acceleration - For an object traveling at speed <i>v</i> in a circular path with radius <i>r</i> , the magnitude of centripetal acceleration is: $a_c = \frac{v^2}{r}$.
Kinetic Energy	The kinetic energy of a particle is one-half the product of the particle's mass and the square of its speed. Formula: $K = \frac{1}{2}mv^2$
Potential Energy	 A scalar function of position that can be defined for any conservative force in a way that makes it easy to calculate the work done by that force over any path. Calculating the work done by a conservative function along an arbitrary path by taking the difference in potential energy evaluated at the two endpoints: W = U(r_B) - U(r_A)
Linear momentum	Linear momentum is defined as the product of a system's mass multiplied by its velocity: $p = mv$. ! Momentum is directly proportional to the object's mass and also its velocity. Thus the greater an object's mass or the greater its velocity, the greater its momentum. In the context of Newton's second law of motion - The net external force equals the change in momentum of a system divided by the time over which it changes. Formula: $\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t}$ Impulse - Change in momentum • the average net external force multiplied by the time this force acts: $\Delta \vec{p} = \vec{F}_{avg, net} \cdot \Delta t$
Linear momentum Universal Gravitation	Linear momentum is defined as the product of a system's mass multiplied by its velocity: $p = mv$. ! Momentum is directly proportional to the object's mass and also its velocity. Thus the greater an object's mass or the greater its velocity, the greater its momentum. In the context of Newton's second law of motion - The net external force equals the change in momentum of a system divided by the time over which it changes. <i>Formula:</i> $\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t}$ Impulse - Change in momentum • the average net external force multiplied by the time this force acts: $\Delta \vec{p} = \vec{F}_{avg}$, net $\cdot \Delta t$ Objects with mass feel an attractive force that is proportional to their masses and inversely proportional to the square of the distance. <i>Formula:</i> $F = G \frac{Mm}{r^2}$

	! Water waves comprise both transverse and longitudinal waves.
	 Characteristics: Amplitude: half of the distance measured from crest to trough. Wavelength: the spatial period of the wave (from crest to crest or trough to trough). Frequency: the number of cycles per unit of time (the number of crests that pass a fixed point per unit of time). Velocity: the rate at which the phase of the wave propagates in space. Energy Transportation Waves carry energy along an axis defined to be the direction of propagation. ! Electromagnetic waves can be imagined as self-propagating transverse oscillating waves of electric and magnetic fields. <i>Relation of waves</i>: v = fλ
	 Sound waves are mechanical waves, meaning, they require a medium to travel through. Longitudinal in air and water. Can be both longitudinal and transverse in solids.
Electricity and Magnetism	The electric force is created by electric charges. • charged particles: protons (+1) and electrons (-1) Coulomb's Law: $F = k_e \cdot \frac{ q_1 \cdot q_2 }{r^2}$ Electric Dipole Moment: $\vec{p} = q\vec{d}$ • The direction of the dipole moment is that it points from the negative charge to the positive charge. The effect that a uniform electric field has on a dipole - Each individual charge feels a new force from the field, but the charges are equal in magnitude, and the forces act in opposite directions, so the net force on it is zero. Torque on a dipole: $\vec{\tau} = \vec{p} \times \vec{E}$ Potential energy charge for a rotating dipole: $U = -\vec{p} \cdot \vec{E} = -pE \cos(\theta)$ Electric field of a dipole: $\vec{E} = \frac{1}{4\pi\epsilon_0} \cdot \frac{2p}{r^3}$